Mario A. Gomez Andreu

M.Sc. Student in Robotics, Systems and Control

margomez@ethz.ch **Q** mgomezandreu

Education

09/2023 – Ongoing	ETH Zürich, SwitzerlandM.Sc. in Robotics, Systems and ControlCurrent GPA: 5.82/6
09/2020 - 08/2023	 Technical University of Darmstadt, Germany B.Sc. in Computer Science Graduated with GPA: 1.15/1.0 (top 2.24%)

Research Experience

03/2024 – ongoing	 Trajectory Planning on 3D Gaussian Splats <i>RSL @ ETH Zürich</i> Developed FOCI, a novel algorithm for trajectory optimization on 3D Gaussian Splatting (3DGS) maps, enabling orientation-aware planning for mobile robots in complex environments. Designed and implemented the GPU-accelerated collision computation module based on overlap integrals between Gaussian distributions, allowing fast and fully differentiable trajectory optimization. Validated the method through experiments with the ANYmal quadruped robot, demonstrating efficient planning in highly detailed 3DGS environments with hundreds of thousands of Gaussians.
04/2024 – 09/2024	 Modelling for Universal Soft Lasso Gripper [1] <i>RSL</i> @ <i>ETH Zürich</i> Co-authored a research paper on rope-based robotic manipulation, contributing the full simulation framework modeling the manipulator's physical behavior and object interactions. Evaluated the simulation's fidelity against physical trials, demonstrating accurate performance under quasi-static and contact conditions, and enabling future control development in simulation.

04/2023 - 08/2023	Optimization Based Motion Planning for Robotic Juggling [2]
	IAS Lab @ TU Darmstadt
	 First author of a research paper extending robotic juggling from uniform patterns to arbitrary siteswap sequences using novel motion planning and contact constraints. Developed a bi-level planning framework combining ball trajectory prediction with robot motion optimization to robustly execute toss juggling with varying throw heights. Demonstrated full pattern coverage and stability for all vanilla siteswap juggling sequences (up to 9-throws) in simulation, including random transitions and long-horizon execution.
09/2022 – 03/2023	 Robotic Tactile Exploration [3] IAS Lab @ TU Darmstadt Contributed to an active sampling framework for object hardness classification using vision-based tactile sensors (VBTS).

Work Experience

09/2024 – 03/2025	 Gravis Robotics AG, Zurich <i>Internship</i> Developed and implemented a delay-aware Model Predictive Control (MPC) strategy to improve latency handling in the control systems of automated excavators using C++ and Python Designed and integrated a collision-aware trajectory planner, enabling safe and efficient arm movements in complex environments. Achieved a 20% increase in motion speed validated by comprehensive simulation and real-hardware testing of the improved system.
05/2022 – II/2022	 HS Analysis GmbH, Karlsruhe Working student Independently developed and integrated a complete software module for the automated evaluation of Lateral Flow Assays (biological diagnostic tests, e.g., COVID-19 tests) as part of a customer project, from concept to delivery.
04/2021 – 03/2022	 University Clinic, Hamburg-Eppendorff <i>Research assistant</i> Designed and optimized a tool to translate structured tabular data into graph representations using Neo4j. Adapted internal visualization components and collaborated on enhancing a translation application for graph database use.
07/2020 – 03/2021	 German Cancer Research Center (DKFZ), Heidelberg Research Assistant Independently developed Tableau dashboard prototypes for the visualization of medical data and supported the creation of scientific data visualizations.

Awards

06/2021 – Ongoing	German Academic Scholarship Foundation (Studienstiftung des deutschen Volke	
	Scholarship holder	

Skills

Programming	Python, C++, MATLAB
Libraries / Frameworks	PyTorch, IsaacGym, CasADi, IPOPT, ROS/ROS2
Tools / DevOps	Git, Docker
Simulation	Gazebo, Mujoco, IsaacGym
Languages	German (native), English (fluent), Spanish (fluent)

Publications

- Christian Friedrich, Mario Gomez Andreu, Gabriel Métois, Fan Shi, Marco Hutter, and Robert Baines. "RoboWrangler: Toward Rope-based Grasping for Mobile Manipulation". In: *IEEE International Conference on Soft Robotics (RoboSoft)*. Accepted for publication. IEEE, 2025.
- [2] **Mario Gomez Andreu**, Kai Ploeger, and Jan Peters. "Beyond the Cascade: Juggling Vanilla Siteswap Patterns". In: 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2024, pp. 2928–2934.
- [3] J. Chen, A. Kshirsagar, F. Heller, **M. Gomez Andreu**, B. Belousov, T. Schneider, L. P. Y. Lin, K. Doerschner, K. Drewing, and J. Peters. "Active Sampling for Hardness Classification with Vision-Based Tactile Sensors". In: *German Robotics Conference (GRC)*. 2025.