
FOCI: Trajectory Optimization on Gaussian Splats

Mario Gomez Andreu*1, Maximum Wilder-Smith*1, Victor Klemm1,
Vaishakh Patil1, Jesus Tordesillas2, Marco Hutter1

Abstract— 3D Gaussian Splatting (3DGS) has recently gained
popularity as a faster alternative to Neural Radiance Fields
(NERFs) in 3D reconstruction and view synthesis methods.
Leveraging the spatial information encoded in 3DGS, this work
proposes FOCI (Field Overlap Collision Integral), an algorithm
that is able to optimize trajectories directly on the Gaussians
themselves. ConvGauss leverages a novel and interpretable
collision formulation for 3DGS using the notion of the overlap
integral between Gaussians. Contrary to other approaches,
which represent the robot with conservative bounding boxes
that underestimate the traversability of the environment, we
propose to represent the environment and the robot as Gaussian
Splats. This not only has desirable computational properties,
but also allows for orientation-aware planning, allowing the
robot to pass through very tight and narrow spaces. We
extensively test our algorithm in both synthetic and real
Gaussian Splats, showcasing that collision-free trajectories for
the ANYmal legged robot that can be computed in a few
seconds, even with hundreds of thousands of Gaussians making
up the environment.
Code: Will be made available upon acceptance

I. INTRODUCTION

Trajectory planning is integral to autonomous mobile
robotics to ensure guided and safe operation. However,
in order to make an informed decision, these planning
algorithms heavily depend on the underlying environment
representations. Popular representations include occupancy
grids, signed distance fields, 3D Meshes, and point clouds.

Recently, NERFs [1] have been proposed as a novel neural
representation of the environment. They can be created from
simple monocular images and they encode the environment
as a fully connected neural network, mapping position in
space and viewing direction to occupancy and color. How-
ever, they suffer from having slow inference speeds because
new views have to be created using a computationally ex-
pensive ray-casting procedure. More recently, 3DGS [2] has
been proposed as a promising alternative to NERFs. Instead
of using a neural network to represent the radiance field, it is
defined explicitly by a set of 3D Gaussian ellipsoids. Because
of this, new views can be efficiently generated by projecting
these ellipsoids into the view plane instead of sampling the
implicit density of a NERF along a ray. Not only does this
accelerate novel view synthesis on learned scenes, but the

*These authors contributed equally
1The authors are with the Robotic Systems Lab, ETH Zürich,

Switzerland. {margomez, mwilder, vklemm, patilv,
mahutter }@ethz.ch

2The author is with the IIT and ICAI, Comillas Pontifical University
(Spain). jtordesillas@comillas.edu

This work was funded by NCCR Automation, and Swiss Federal Rail-
ways (SBB) via ETH Mobility Initiative.

Fig. 1: Four different orientation-aware trajectories planned
through a Stonehenge environment for an ANYmal legged
robot. Splines show A* initial trajectories while green, red
and blue Gaussians show an orientation-aware plan with
green representing the front, red the center, and blue the
rear.

rendering speeds allow for rapid training of environments in
a matter of minutes.

Given the advantages that 3DGS offers when compared
with NERFs, the natural question is how a robot can leverage
this Gaussian representation for navigation. In this paper,
we propose an algorithm that enables a robot to perform
trajectory optimization directly on the 3D Gaussians.
Although some steps have been taken in this direction [3],
[4], [5], the huge number of Gaussians that a scene can have,
together with the specific formulation of an explicit collision
measure, makes this problem especially hard.

To overcome these challenges, we propose FOCI, a tra-
jectory optimization algorithm that leverages the overlap
integral - the spatial integral over the multiplication of two
functions - as a proxy measure for the collision between
two Gaussians. By representing both the robot and the
environment with 3D Gaussians, evaluating the full-body
collision between them reduces to a sum of normal dis-
tribution evaluations. Furthermore, the resulting expression



Splat-Nav [3] GS-Planner [6] GSM [5] GaussNav [4] FOCI (ours)
Planning pipeline included ✓ ✓ ✗ ✓ ✓
Orientation-aware collision ✗ ✗ ✗ ✗ ✓
Covariance information leveraged ✓ ✓ ✓ ✗ ✓

TABLE I: Comparison of our work with related works on Gaussian Splats

is fully differentiable, yielding expressive gradients in the
optimization step.

The contributions of this work are therefore summarized
as follows:

• A novel collision measure between Gaussian Splats
based on the overlap integral between Gaussians.

• A trajectory planning algorithm that uses this formula-
tion to optimize fully differentiable trajectories.

• A GPU implementation of the trajectory optimization.
• An evaluation of the proposed algorithm on the ANY-

mal legged robot in simulation and the real world.

II. BACKGROUND AND RELATED WORK

Environmental representations are essential parts of the
planning pipeline. They determine what methods can be
used for trajectory generation, as well as what sensors and
information are needed for real-world deployments.

A. Radiance Fields

Radiance Fields are widely used in visual computing
to represent 3D scenes and perform novel view synthesis,
creating photorealistic renders from out of domain poses.
The most basic type is a Neural Radiance Field, initially
proposed by Mildenhall et al. [7], which are a type of
environment representation that provide a neural mapping
from position in space and a viewing angle to visual density
and color along a ray. To render an image this neural
radiance is integrated along a series of rays capturing
view-dependent effects like specularity and volumetrics.

However, this ray casting operation can be costly at
scale, and the implicit scene representation can make direct
sampling difficult. As an alternative, 3DGS [2] produces
similar quality reconstruction with an explicit basis at far
faster speeds. Instead of encoding the scene in a neural
network, 3DGS creates a series of 3D Gaussian ellipsoids
with colors and Spherical Harmonics [8] to encode view-
dependent effects. Instead of ray casting each Gaussian, the
ellipsoids are splatted [9] onto the viewing plane for rasteri-
zation levels of speed. Similar to NERFs, 3DGS is optimized
by minimizing the deviation between an actual image and
the corresponding image predicted by the model. Because of
their explicit nature, 3DGS allows for an informed guess that
initializes all Gaussian means to points from Structure from
Motion. The photometric losses then optimize the Gaussians’
colors, opacities and covariances to more accurately match
the images. During training, adaptive density control will
split, prune, and clone Gaussians ensuring there are just
enough to faithfully represent the scene.

B. Trajectory Optimization

1) Standard Methods: Trajectory planning generates a
path for a robot that is collision-free with the surrounding
environment and further minimizes a performance metric
such as execution time or control efforts. Depending on the
formulation, trajectory optimization also includes optimizing
control inputs to follow the trajectory. Similar to other
works [3], [4], [6], we assume robust low-level control that
can track reasonably smooth state trajectories, so we omit
the control inputs in our optimization formulation.

Graph-based methods such as A* [10], and sampling-
based methods such as RRT* [11] are simple to implement
and produce a series of collision-free waypoints. Trajectories
produced by graph-based methods are often good initial
guesses for other approaches. Unlike graph- or sampling-
based methods, spline-based methods optimize a continu-
ous trajectory instead of a series of waypoints. Collision
avoidance is ensured by either constraining the convex hull
of this spline to a predetermined safety corridor or by
ensuring no collision at discrete sample points along the
spline. Zhou et al. [12] obtain an obstacle gradient to push
spline trajectories out of obstacles to achieve collision-free
trajectories while Gao et al. [13], [14] construct a safe flight
corridor around an RRT* path through a point cloud and
optimize a spline trajectory inside the corridor to ensure
safety.

2) Radiance Field Methods: There are a plethora of tra-
jectory optimizing algorithms designed to work on standard
scene representation such as meshes or point clouds– and
now with the recent emergence of Radiance Fields– NERFs
are being used to tackle the problem. Planning directly on
Radiance Fields can be favorable as they are often trained
from monocular images, and the extensive reconstruction
allows for their use in multiple downstream tasks from plan-
ning and SLAM to teleoperation. Pantic et al. [15] propose a
method to obtain an Euclidean Signed Distance Field (ESDF)
directly from a NERF by inserting an additional head into the
neural network to output the encoded distance. Adamkiewicz
et al. [16] directly use the opacity output by the NERF as a
collision measure at a set of points of the robot body. Starting
from an A*-initial guess, a joint cost function consisting
of a control effort and opacity term at the control points
is minimized. In CATNIPS, [17] a probabilistic approach
is used and shows that a NERF is equivalent to a Poisson
Point Process, which allows for direct quantification of the
collision probability. Using this property, they formulate a
chance constraint trajectory optimization.

Due to its novelty, few papers have been published on
trajectory optimization for Gaussian Splats. In GaussNav [4],
Lei et al. reduce the Gaussian Splat to a point cloud of



its means, which is voxelized and then projected to a
two-dimensional cost map where trajectories are planned.
This produces quick results but does not fully leverage
the explicit 3D nature of 3DGS. SplatNav [3] additionally
takes the covariances of the Gaussians into account and
computes a polyhedral safety corridor around an A* initial
guess. The free space is determined by calculating the
distance between the robot ellipsoid and the confidence
intervals of the environment Gaussians. Inside this safety
corridor, a spline trajectory is optimized to produce a safe
path. The GS-Planner [6] constrains the position along
the trajectory to be outside of the 3σ confidence interval
of the joint Gaussian of the ellipsoid and robot radius.
Unlike SplatNav [3], which uses a safety corridor as
an intermediate representation, this constraint is directly
imposed on the spline. Goel and Tabib [5] propose a
method to derive an ESDF and collision probability of a
Gaussian Surface Model for an ellipsoidal robot with a
fixed orientation, which can then be used to plan trajectories.

While these works present considerable steps towards
3DGS planning, they consider only ellipsoidal robots with a
fixed orientation. However, in real world settings [18], [19],
optimizing orientation is crucial to navigating through narrow
passageways. By leveraging a detailed whole-body overlap
model, we propose a solution to this shortcoming. Table
I provides an overview of how our algorithm compares to
related work.

III. METHOD

Our methodology can be split into three parts: 1) trajectory
representation to create an initial spline, 2) collision measure
and 3) optimization loop.

A. Trajectory Representation

We employ cubic B-splines [20] for the optimization to
generate a fully differentiable and smooth trajectories in d
dimensions. With B-splines, every point along the trajectory
can be expressed as a weighted sum of the H control points
Qi of the trajectory. The progress along the trajectory is
usually parameterized by a progress variable s, which can
(but is not required to) be equal to the system time t. Cubic
B-splines have H − 4 knots, which we set equidistantly to
{0, 1, . . . ,H − 5}. Each point along the trajectory depends
on four successive control points according to Equation 1
with s′ = s− i.

x(s′) =
[
1 s′ s′

2
s′

3
] 1
6


1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1


︸ ︷︷ ︸

Φ


qT
i

qT
i+1

qT
i+2

qT
i+3


(1)

By discretizing the trajectory with ∆s into K intervals and
constructing a matrix Φ from Equation 1 evaluated at each
progress step, the relationship between sample point matrix

x = [x0,x1, . . . ,xK ]T ∈ RK×d and control point matrix
Q = [q1,q1, . . . ,qH ]T ∈ RH×d is then given as

x = ΦQ (2)

This parametrization works well for simple vector spaces
such as R3 but fails to interpolate between orientations.
Spline representations for Lie Groups have been discussed
in robotics literature [21], which allow for pose optimization
in SE(3), encoding orientations.

Although this formulation is fully compatible with the
proposed framework, we decided to follow a simpler pa-
rameterization because our target platform is a legged robot.
Instead of the full pose, only the position p and yaw angle
ψ are parameterized to optimize control points qi ∈ R4.

B. Collision Measure

To quantify the collision between two objects, we want
to measure the overlap between them. The collision measure
should, therefore, fulfill the following three properties: 1) It
should be close to zero if two objects do not overlap. 2) It
should be greater than zero when two objects overlap and
quantify the magnitude of that overlap. 3) It should be dif-
ferentiable to allow for gradient evaluations in optimization.

In our work, we model both the environment p(x) and
the robot r(x) by 3D Gaussians, allowing us to define the
density of the robot and the environment at a specific point
in space as

p(x) =

N∑
i=1

N (x;µi,Σi) (3)

r(x) =

M∑
j=1

N (x; µ̄i, Σ̄j) (4)

The volume in which both quantities overlap is defined
as the collision volume. To compute the magnitude of
the collision, we compute the overlap integral between the
environment field p(x) and the robot field r(x):

∫
R3

p(x)r(x)dV =

N∑
i=1

M∑
j=1

∫
R3

N (x;µi,Σi)N (x; µ̄j , Σ̄j)dV

(5)

=

N∑
i=1

M∑
j=1

N (µ̄j ;µi,Σi + Σ̄j) (6)

Resulting in a representation that is fully differentiable
with respect to the means µ̄j and covariances Σ̄j . Note that
these robot means and covariances can further be parame-
terized by, for example, the base position and joint angles,
whose gradients can then be derived with the chain rule.

This measure for collision fulfills the desired properties
defined above. Because of Gaussian’s exponential nature, it
exponentially converges to zero as the distance between the
robot and the obstacle increase. That also means it does not
contribute meaningfully to the gradient at further distances.



Note that the quantity N (µ̄j ;µi,Σi + Σ̄j) can be in-
terpreted as the exponential of the negative Mahalanobis
distance between µ̄j and µi using the joint covariance of
the robot and environment Gaussian.

N = exp(−1

2
(µ̄j − µi)

T (Σi + Σ̄j)
−1(µ̄j − µi)) (7)

= exp(−1

2
dM (µ̄j ,µi)) (8)

The Mahalanobis distance takes the potentially asymmetric
extent of the Gaussians into account, and the exponential
ensures the desired decaying property of the measure.

C. Optimization Formulation

Since we use splines to represent the trajectory, we op-
timize the control points qi = [pT

i , ψi]
T ∈ R4 of the

spline as decision variables. Due to the non-linear and
constrained nature of the optimization problem, we employ
the interior point method. Whenever integrating a quantity
like the collision measure along the spline is necessary, we
approximate it as a discrete sum over the values sampled
along the spline in K equidistant steps. We represented the
robot position and yaw orientation as a cubic B-spline. The
kinematics of each Gaussian that makes up the robot is a
function of the position and orientation of the base µ̄j(p, ψ).

We minimize the weighted sum of the obstacle cost, the
jerk along the trajectory, and the distance of the final point
to the goal with weights ω1 = 0.1, ω2 = 40 and ω3 = 1.
The collision avoidance is included in the objective function
instead of the constraints because the collision measure is
not normalized, making finding an appropriate threshold
unfeasible. A similar approach has been taken by [16], which
faced a similar issue for NERFs. We constrain the initial
position of the trajectory to the current position x0. When
planning for ANYmal, we further constrain the trajectory
height to be at an appropriate distance h above the ground
so that the robot can follow it.

We ensure that the velocity and acceleration remain within
the physical limits of mobile system. Instead of directly
constraining samples of the respective derivatives of the splat
along the trajectory, we leverage the convex hull property of
splines. Since each spline segment lies within the convex
hull of its control points, it is enough to constrain the norm
of the velocity and acceleration control points, to guarantee
constraint satisfaction along the entire spline. However, the
conservativeness of this over approximation depends on the
choice of spline basis. Because of this, we compute the
convex hull with respect the MINVO Basis [22], which
results in convex hulls of minimal volume, and therefore the
least conservative approximation.

The optimization problem is defined in Equation 9. Note
that the spline is parameterized as a function of the progress
variable s, we compute the time derivative with dip

dti =
dip
dsi

(
ds
dt

)i
and assume m =

(
ds
dt

)
to be constant.

min
Q

ω1

K∑
k=0

N∑
i=1

M∑
j=1

N (µ̄j(x(k∆s), ψ(k∆s));µi,Σi + Σ̄j)

(9)

+ ω2

K∑
k=0

∥ ...
x (k∆s)∥+ ω3∥x(K∆s)− xgoal∥ (10)

s.t ∥x(0)− x0∥ = 0 (11)
∥x(k∆s)(2)− h∥ = 0 ∀k (12)
∥ṗ(s)∥ ≤ vmax∀s (13)
∥p̈(s)∥ ≤ amax∀s (14)∣∣∣ψ̇(s)∣∣∣ ≤ ωmax∀s (15)∣∣∣ψ̈(s)∣∣∣ ≤ αmax∀s (16)

In order to create an initial guess, the 3DGS is used to
create a rough occupancy grid, where a voxel is occupied if it
contains at least one mean. A* is then run on this occupancy
grid and used to initialize the control points by fitting a spline
to the resulting path.

D. Implementation Details

We define and solve the described optimization problem
with Casadi [23]. We exploit the independent summation
structure of the collision measure (Equation 5) and run
this computation on the GPU in parallel. This led us to
define a custom Casadi functor that computes the evaluation
of the function and is gradients in parallel using NVIDIA
Warp [24]. Note that other GPU extensions for Casadi, such
as L4Casadi [25] and CusADI [26] exist, but were not
directly applicable due to the custom 3D Gaussian overlap
integral formulation. The optimization problem is then solved
via the interior point method (IPOPT) [27] with the custom
overlap integral functor.

IV. EXPERIMENTS

In this section, we evaluate our algorithm by applying it
to planning problems in different environments represented
by 3DGS. All experiments are run on an Intel i7-8750H with
16 GB of RAM and an NVIDIA RTX 2070 Max-Q.

A. Trajectory Evaluation

To evaluate the functionality of our system, we plan
trajectories through a range of 3DGS environments, both
artificially generated scenes and ones created from real-
world captures. Furthermore, we demonstrate the use of the
algorithm for navigating an ANYmal robot on hardware to
highlight the importance of orientation-aware planning.

1) ANYmal Navigation: In order to plan through a 3DGS
scene, the robot must be properly localized in a correctly
scaled Gaussian environment. In deployments, this was ac-
complished by performing ICP to align accumulated LiDAR
data with the surface means of the Gaussian Splat. In
simulation, synthetic scenes can be created and arbitrarily
scaled to provide complex testing scenes.



(a) Pillar Environment (b) Narrow Corridor

Fig. 2: Sample trajectories created on synthetic testing data
showing a 3 Gaussian robot rotating to navigate the environ-
ments. The 3 Gaussians are shown in green for the front, red
for the middle and blue for the rear of the robot, showing
the rotation to navigate obstacles.

Environment Initial Guess Time Solve Time # of Gaussians
Narrow Corridor 0.24s 0.47s 24k

Pillars 0.25s 0.45s 49k
Machine Hall 0.22s 2.12s 243k
Stonehenge 0.55s 0.83s 138k

TABLE II: Planning time for synthetic 3DGS scenes (top)
and realistic scenes (bottom) using a 3 Gaussian robot.

Figure 2a shows longer trajectories through the more
complex pillar environment. The algorithm gracefully han-
dles trajectories requiring additional turns while adapting the
orientation to keep a maximum distance from the wall.

As Figure 2b shows, the planning algorithm effectively
leverages the asymmetry of ANYmal to pass through the
narrow opening collision-free. The start and end positions
are constrained to be parallel to the wall; requiring the
orientation to change to pass through the opening.

(a) Machine Hall (b) Stonehenge Environment

Fig. 3: Trajectories planned for a 3 Gaussian robot rotating
through realistic scenes.

2) General Trajectory Planning Through 3DGS: Figure 3
shows that we can plan collision-free trajectories through
splats that were created directly from the real-world envi-
ronments. In the case of the machine hall sample, the data
used for the reconstruction came entirely from the on-board
sensors of the robot [28], quickly providing a scene with
accurate scaling.

3) Hardware Experiments: Finally, we showcase the
method deployed on hardware using a real 3DGS recon-
struction of a scene captured using drone imagery and
localized on site using ICP on the LiDAR data and Gaussian
means. The narrow passages visible in Figure 4 required the

Fig. 4: Trajectories planned for the ANYmal robot through
real world obstacles. On the bottom the actual robot can be
seen at the site following the trajectories generated by our
algorithm FOCI.

Method Solve Time (s) Path Length (-) Min. Safety Dist. (m)
RRT* 100.06 0.92 0.51

Splat-Nav 0.76 1.01 0.56
Ours 0.78 0.88 0.27

TABLE III: Comparisons of the performance of our method
with a similar 3DGS based planner and simple RRT* plan-
ner. Three metrics are used for evaluation, the speed of
optimization, a path length relative to the scene scale, and
minimum distance between the robot model and environment
to measure the needed safety corridor.

robot to rotate in order to safely traverse the environment,
while obstacles on the ground forced the height-constrained
trajectories to avoid shortcuts.

B. Runtime

We evaluate the performance of our method by comparing
the runtimes of the Casadi optimization on a single CPU
core, multiple CPU cores, and the GPU. The computation
time is generally linear with the number of environmental
Gaussians, robot Gaussians, and collision sample points.

While a significant speedup can be observed when opti-
mizing on multiple CPU cores using OpenMP, our custom
implementation is 320 times faster, often resulting in
solutions that only take a few seconds.

Table II show the total planning time for different environ-
ments of varying complexity. In the realistic environments,
the larger scenes resulted in a longer A* search time, while
the more complex 3 Gaussian robot slightly increases the



Serial OpenMP Casadi Warp (Ours)
10−2

10−1

100

101

Ti
m
e 
(s
)

Performance of Methods
Creation Time
Optimization Time

Fig. 5: Comparison of the solver’s creation and runtime
running on the CPU and GPU for 50k environmental Gaus-
sians and one robot Gaussian. The “serial” method is on a
single CPU core, “OpenMP” runs on multiple CPU cores
and CasADi Warp is our custom GPU implementation.

0 20 40 60 80 100
Number of Robot Gaussians

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ti
m
e 
(s
)

Optimization Time vs. Robot Complexity
Initial Plan
Optimized Plan

Fig. 6: Optimization time for orientation-aware planning
using increasingly complex robot models. These are planned
through the Stonehenge environment with 138k Gaussians.

general solve time. This relation between complexity of the
robot model and solve time forms a linear relation as shown
in Figure 6.

In comparisons with similar methods we are able to
surpass the speed of traditional methods such as RRT*
on large complex scenes, while having similar time perfor-
mance to state-of-the-art 3DGS methods such as Splat-
Nav. Additionally, our orientation-aware planning allows us
to use halve the safety corridor distance in one axis to model
a 1m by 0.5m robot such as ANYmal. Due to this unique
ability to model the robot as a collection of Gaussians and
therefore consider the robot’s orientation, the smaller safety
corridor allowed for slightly shorter paths, leveraging the
robot’s geometry.

In Figure 6 we compare the effect of more complex robot
Gaussians on the solve time for large complex scenes such as
Stonehenge. A linear relation between robot complexity
and optimization time shows the potential of modeling
more complex robot geometry, allowing even tighter safety
corridors on more complex robots.

Fig. 7: The collection of paths used to evaluate different
methods with various start and end goals around Stonehenge.
The RRT* path is is shown in red and Splat-Nav[3] in green.

V. LIMITATIONS

Three current shortcomings of the algorithm include a) oc-
casional obstacle collision, b) distance agnostic optimization,
c) sensitivity to 3DGS quality.

a) Both the acceleration constraint as well as the obstacle
cost are additive terms in the cost function. Since obstacle
avoidance is not formulated as a hard constraint, it can
be traded off with the acceleration cost, yielding a low
acceleration but colliding trajectories. Figure 8 shows a
trajectory resulting from such a trade off. Related work,
such as trajectory planning on NeRFs by Adamkiewicz et
al. [16], has also encoded obstacle avoidance as a cost
function component. We are confident that the existing issues
can be resolved by constraining the trajectory to be close to
the initial guess, tuning the weights of the individual cost
terms, or using higher-order derivatives of the trajectory as
the effort cost.

Fig. 8: Optimized trajectory for which the collision avoidance
fails.

b) Trajectories are parameterized over an interval that does
not depend on the physical duration of its execution but on
the number of used control points. While this formulation is
easy to implement, it has impactful disadvantages. Between
two trajectories of the same shape but different lengths, the
shorter one has a lower acceleration cost than the longer one
because the robot has to be accelerated over larger distances
while still being parametrized over the same progress in-
terval. This means that increasing the distance between the
start and end pose leads to the acceleration cost becoming the
dominant term in the optimization, decreasing the importance
of obstacle avoidance. These effects can be overcome by
making the optimization distance-aware. The acceleration
cost could be scaled by the length of the initial guess
between the start and the goal. Alternatively, the execution
time between the start and goal could be introduced into the



trajectory representation and directly optimized as a decision
variable.

c) By using an overlap integral to compute collision
between the robot and the scene, we assume that areas of
high Gaussian overlap in the environment are dense objects
geometrically, however this is not always the case. Instead,
the 3DGS optimization process results in a high number of
overlapping Gaussians in areas of high information density,
both in terms of texture and geometric data. More com-
plex shapes such as edges, fine strands, or lettering result
in a large amount of Gaussians to accurately capture the
geometry and texture. This means that when computing
the overlap integral over the environment, flat regions with
text or patterns have a slightly higher collision cost than
clean flat surfaces. Additionally, as splatting only renders
and optimizes Gaussians visible to the camera, the internal
Gaussian density of objects is not guaranteed. This means
that if the trajectory does collide with a wall it can get stuck
in a local minima and not recover with the aid of internal
collision gradients. Both of these can be addressed with more
intelligent 3DGS creation, either by ensuring the Gaussians
mainly represent geometry [29], or ensuring internal object
density is consistent [5].

VI. CONCLUSION

In this work, we proposed a novel collision formulation for
3D Gaussian Splatting, that is computed in an efficient man-
ner, and integrated it into a trajectory optimization pipeline.
We show that it can be effectively used for orientation-aware
planning and verify it on the ANYmal robotic platform.
Because we exclusively operate in 3D Gaussian space,
representing the environment and the robot as Gaussians, our
method can be freely combined with new developments from
the 3DGS community. Furthermore, we show this method
works on realistic data including scenes captured using the
onboard sensor of the robot itself.

REFERENCES

[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng, “Nerf: representing scenes as neural
radiance fields for view synthesis,” Commun. ACM, vol. 65, no. 1,
p. 99–106, Dec. 2021. [Online]. Available: https://doi.org/10.1145/
3503250

[2] B. Kerbl, G. Kopanas, T. Leimkuehler, and G. Drettakis, “3d gaussian
splatting for real-time radiance field rendering,” ACM Transactions on
Graphics, vol. 42, 8 2023.

[3] T. Chen, O. Shorinwa, W. Zeng, J. Bruno, P. Dames, and M. Schwager,
“Splat-nav: Safe real-time robot navigation in gaussian splatting
maps,” 3 2024. [Online]. Available: http://arxiv.org/abs/2403.02751

[4] X. Lei, M. Wang, W. Zhou, and H. Li, “Gaussnav: Gaussian splatting
for visual navigation,” arXiv preprint arXiv:2403.11625, 2024.

[5] K. Goel and W. Tabib, “Distance and collision probability estimation
from gaussian surface models,” arXiv preprint arXiv:2402.00186,
2024.

[6] R. Jin, Y. Gao, Y. Wang, Y. Wu, H. Lu, C. Xu, and F. Gao, “Gs-planner:
A gaussian-splatting-based planning framework for active high-fidelity
reconstruction,” in 2024 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 2024, pp. 11 202–11 209.

[7] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng, “Nerf: Representing scenes as neural radiance fields
for view synthesis,” 2020.

[8] Fridovich-Keil and Yu, M. Tancik, Q. Chen, B. Recht, and
A. Kanazawa, “Plenoxels: Radiance fields without neural networks,”
in CVPR, 2022.

[9] M. Zwicker, H. Pfister, J. van Baar, and M. Gross, “Ewa volume
splatting,” in Proceedings Visualization, 2001. VIS ’01., 2001, pp. 29–
538.

[10] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[11] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller,
“Anytime motion planning using the rrt,” in 2011 IEEE international
conference on robotics and automation. IEEE, 2011, pp. 1478–1483.

[12] X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, “Ego-planner: An esdf-
free gradient-based local planner for quadrotors,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 478–485, 2021.

[13] F. Gao and S. Shen, “Online quadrotor trajectory generation and
autonomous navigation on point clouds,” in 2016 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR), 2016,
pp. 139–146.

[14] F. Gao, W. Wu, W. Gao, and S. Shen, “Flying on point clouds: Online
trajectory generation and autonomous navigation for quadrotors in
cluttered environments,” Journal of Field Robotics, vol. 36, pp. 710–
733, 6 2019.

[15] M. Pantic, C. Cadena, R. Siegwart, and L. Ott, “Sampling-free
obstacle gradients and reactive planning in neural radiance fields,” in
Workshop on” Motion Planning with Implicit Neural Representations
of Geometry” at 2022 IEEE International Conference on Robotics and
Automation (ICRA 2022), vol. 1, 2022.

[16] M. Adamkiewicz, T. Chen, A. Caccavale, R. Gardner, P. Culbertson,
J. Bohg, and M. Schwager, “Vision-only robot navigation in a neural
radiance world,” IEEE Robotics and Automation Letters, vol. 7, no. 2,
pp. 4606–4613, 2022.

[17] T. Chen, P. Culbertson, and M. Schwager, “CATNIPS: Collision avoid-
ance through neural implicit probabilistic scenes,” IEEE Transactions
on Robotics, 2024.

[18] X. Dong, Y. Cui, J. Xiang, D. Li, and Z. Tu, “An efficient trajec-
tory generation for bi-copter flight in tight space,” arXiv preprint
arXiv:2406.00671, 2024.

[19] N. Funk, J. Tarrio, S. Papatheodorou, P. F. Alcantarilla, and
S. Leutenegger, “Orientation-aware hierarchical, adaptive-resolution
a* algorithm for uav trajectory planning,” IEEE Robotics and Au-
tomation Letters, vol. 8, no. 10, pp. 6723–6730, 2023.

[20] F. Holmér, “The continuity of splines,” https://www.youtube.com/
watch?v=jvPPXbo87ds, December 2022, accessed: 2024-06-26.

[21] C. Sommer, V. Usenko, D. Schubert, N. Demmel, and D. Cremers,
“Efficient derivative computation for cumulative b-splines on lie
groups,” in 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, June 2020. [Online]. Available:
http://dx.doi.org/10.1109/CVPR42600.2020.01116

[22] J. Tordesillas and J. P. How, “Minvo basis: Finding simplexes with
minimum volume enclosing polynomial curves,” Computer-Aided De-
sign, vol. 151, p. 103341, 2022.

[23] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“Casadi: a software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, vol. 11, pp. 1–36,
2019.

[24] M. Macklin, “Warp: A high-performance python framework for gpu
simulation and graphics,” https://github.com/nvidia/warp, March 2022,
nVIDIA GPU Technology Conference (GTC).

[25] T. Salzmann, J. Arrizabalaga, J. Andersson, M. Pavone, and M. Ryll,
“Learning for casadi: Data-driven models in numerical optimization,”
2023.

[26] S. H. Jeon, S. Hong, H. J. Lee, C. Khazoom, and S. Kim, “Cusadi: A
gpu parallelization framework for symbolic expressions and optimal
control,” IEEE Robotics and Automation Letters, 2024.

[27] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, pp. 25–57, 2006.

[28] M. Wilder-Smith, V. Patil, and M. Hutter, “Radiance fields for robotic
teleoperation,” arXiv, 2024.

[29] B. Chao, H.-Y. Tseng, L. Porzi, C. Gao, T. Li, Q. Li, A. Saraf, J.-B.
Huang, J. Kopf, G. Wetzstein, and C. Kim, “Textured gaussians for
enhanced 3d scene appearance modeling,” 2024. [Online]. Available:
https://arxiv.org/abs/2411.18625

https://doi.org/10.1145/3503250
https://doi.org/10.1145/3503250
http://arxiv.org/abs/2403.02751
https://www.youtube.com/watch?v=jvPPXbo87ds
https://www.youtube.com/watch?v=jvPPXbo87ds
http://dx.doi.org/10.1109/CVPR42600.2020.01116
https://github.com/nvidia/warp
https://arxiv.org/abs/2411.18625

	INTRODUCTION
	Background and Related Work
	Radiance Fields
	Trajectory Optimization
	Standard Methods
	Radiance Field Methods


	Method
	Trajectory Representation
	Collision Measure
	Optimization Formulation
	Implementation Details

	Experiments
	Trajectory Evaluation
	ANYmal Navigation
	General Trajectory Planning Through 3DGS
	Hardware Experiments

	Runtime

	Limitations
	Conclusion
	References

